

# Charge-Transfer Complexes between Some S-Methylated Derivatives of 5,5-Dimethyl-2,4-dithiohydantoin and Molecular Diiodine. A UV-Visible, IR, FT-Raman, and $^{13}\text{C}$ NMR Study

Franco Cristiani, Francesco A. Devillanova, Alessandra Garau, Francesco Isaia,\* Vito Lippolis, and Gaetano Verani

Dipartimento di Chimica e Tecnologie Inorganiche e Metallorganiche, University of Cagliari,  
Via Ospedale, 72 09124-Cagliari, Italy

Received 17 May 1994; revised 27 June 1994

## ABSTRACT

Equilibrium constants ( $K$ ) and thermodynamic parameters for the charge-transfer complexes between diiodine and  $\Delta^3$ -4-S-methyl-5,5-dimethylimidazolidine-2-thione (**1**), 2-S-methyl-5,5-dimethylimidazolidine-4-thione (**2**), and  $\Delta^1$ - $\Delta^3$ -2S-methyl-4S-methyl-5,5-dimethylimidazolidine (**3**) have been determined in  $\text{CH}_2\text{Cl}_2$  by UV-Visible spectroscopy. Depending on the solvent polarity, compound **2** exists as a  $\Delta^1$  or  $\Delta^2$  tautomer; both the tautomers are present in  $\text{CH}_2\text{Cl}_2$ . Compounds **1** and **2** act as good donors ( $K = 11,000 \pm 800$  and  $640 \pm 21 \text{ dm}^3 \text{ mol}^{-1}$ ,  $25^\circ\text{C}$ , respectively) owing to the presence of a thioamido group in the molecule, whereas in compound **3**, the *N*-coordination causes a strong reduction of the formation constant ( $K = 14.6 \pm 0.8 \text{ dm}^3 \text{ mol}^{-1}$ ,  $25^\circ\text{C}$ ). The high difference between the stability constants of **1** and **2** has been ascribed to an intramolecular hydrogen bonding between *NH* and the bonded iodine, which can be possible only for **1**. Additional spectroscopic data (FT-Raman, NMR) enables a deeper understanding of the mutual interaction between donors and diiodine.

## INTRODUCTION

The study of the inhibition of the thyroid gland by compounds containing a thioamido group has received much attention in recent years [1–4]. The results showed that the formation constant  $K$  of the adduct ( $D \cdot I_2$ ), where  $D$  is a donor molecule,



is a useful tool in the selection of compounds that may have pharmacological significance, as it is well correlated with the antithyroid activity *in vivo* [5–7].

Our studies on the evaluation of the equilibrium constant of Reaction 1 for different classes of compounds, all of which contain at least one thio- or selenoamido group [8–14], have allowed us to make the following remarks: (a) selenium compounds bind diiodine far more strongly than the sulfur compounds; (b) for the same donor atom, the  $K$  values strongly depend on the chemical environment and are spread over a very large interval; and (c) a small variation in the charge density on the donor atom produces a remarkable change in  $K$ . The search for new compounds, with potential pharmaceutical importance, capable of binding diiodine or acting on enzyme thyroid peroxidase has led us to synthesize three S-methylated derivatives of 5,5-dimethyl-2,4-dithiohydantoin (**4**) with the aim of studying the different donor abilities of

\*To whom correspondence should be addressed.

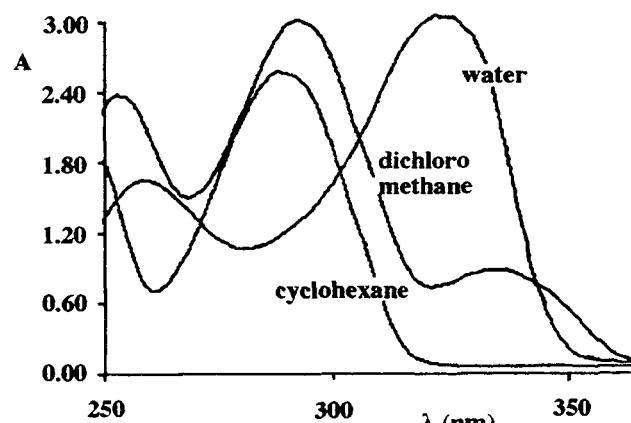
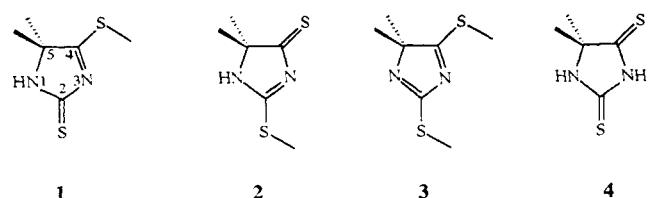




FIGURE 1

**1**, **2**, and **3** toward  $I_2$  in  $CH_2Cl_2$  solution. The results are compared with those previously reported for compound **4** [14].



## RESULTS AND DISCUSSION

Compounds **1**–**3** contain different donor atoms that may compete in the coordination of  $I_2$ . Each donor possesses sulfur and nitrogen atoms characterized by a different capability to transfer electronic charge density to the acceptor molecule ( $I_2$ ). Moreover, as previously verified for 2-S-methyl-5,5-dimethylimidazolidin-4-one [15], compound **2** exists as  $\Delta^1$  and/or  $\Delta^2$  tautomers (annular desmotropy) [16,17], depending on the solvent polarity. The ultraviolet spectra of **2** recorded in water,  $CH_2Cl_2$ , and cyclohexane are reported in Figure 1.

Apolar solvents such as cyclohexane stabilize the  $\Delta^1$  tautomer, while solvents such as water stabilize the  $\Delta^2$  tautomer, in accordance with the dipole moment values calculated both by PM3 and AM1 methods [18]. As can be seen from Figure 1, both tautomers are present in  $CH_2Cl_2$ . Compound **3**, as expected, shows only one UV band that slightly shifts on passing from water to cyclohexane (see the Experimental section). On the other hand, compound **1**, as also found for **2**, shows a remarkable change in its UV spectrum with change of solvent polarity (see the Experimental section). On the basis of molecular structure, it is possible to exclude the presence of a desmotropic equilibrium for **1**, but not that of a thioketo-enolic equilibrium. However, no experimental evidence has been found for the thioenolic tautomer in solution [19].

In the experimental conditions used for the determination of the  $K$ 's, all the charge-transfer complexes exhibit an isosbestic point between the visible band of  $I_2$  and its blue-shifted band (see Figure 2). This fact excludes the presence of a  $D \cdot 2I_2$  adduct but not the contemporary interaction of different donor sites with  $I_2$ .

The  $K$  and  $\epsilon$  values with their relative standard deviations calculated at five different temperatures, together with the thermodynamic parameters for equilibrium 1, are reported in Table 1.

Both the  $K$ 's and the  $\Delta H$ 's for  $1 \cdot I_2$  and  $2 \cdot I_2$  complexes show that **1** and **2** are good donors toward diiodine. These values clearly indicate the thiocarbonyl sulfur to be the donor atom and as expected, are greater than those found for 5,5-dimethylimidazolidine-2,4-dithione (**4**) ( $K = 143 \text{ dm}^3 \text{ mol}^{-1}$ ;  $25^\circ\text{C}$ ;  $CH_2Cl_2$ ;  $\Delta H = -30 \text{ KJ mol}^{-1}$ ) [12].

In fact, the monosubstitution of C-S-Me to C(2)=S or C(4)=S in **4** increases the charge electron density on the ring and favors its partial displacement on to the remaining C=S group. In compound **3**, the double substitution of the thioketonic sulfurs with S-Me produces a strong reduction in both  $K$  and  $\Delta H$  values with respect to compound **4**, in accordance with the lower donor abilities of thioether sulfurs and nitrogens.

The measured  $^{13}\text{C}$  NMR chemical shifts of carbons C(2), C(4), C(5), Me/Me, and SMe for compounds **1**–**4**, together with those of their calculated 1:1 adducts with  $I_2$ , are reported in Table 2. The values previously reported for compound **4** are included for comparison [20].

As verified on other thiohydantoin derivatives [14,20], S  $\cdots I_2$  coordination has the effect of increasing the shielding of the carbon bonded to the donor sulfur as a consequence of charge withdrawal from the ring toward C=S; C(2) in **1** and C(4) in **2** are then shielded by  $\delta = 4.99$  and 4.38, respectively.

All the other carbons are generally deshielded, except C(5) in **2**, which undergoes a shift of  $\delta = 2.76$  toward higher fields. It is important to point out that for **2** the shielding of C(5) occurs contemporaneously with a very high ( $\delta = 21.49$ ) deshielding of C(2). In consequence of the interaction of C(4)=S sulfur with diiodine, electronic charge is attracted toward C(4) from both sides of the ring; the lone pairs of the two nitrogen atoms lower the conjugation toward C(2) and move toward C(4), thus producing a shielding of C(5) and a deshielding of C(2). In the compound **3**  $\cdot I_2$ , all the carbons are deshielded. The shifts of 3.62 and 0.87 for C(2) and C(4), respectively, seem to indicate N(1) as the coordinating atom. With the aim of ascertaining the site of coordination, the  $^{14}\text{N}$  NMR spectra of **3** and of a solution containing **3** and diiodine in a 1:1 molar ratio were recorded in  $CH_2Cl_2$  solution. Only an unresolved broad signal at  $\delta = -92.2$  is present in the free donor spectrum, which shifts to  $-130.5$

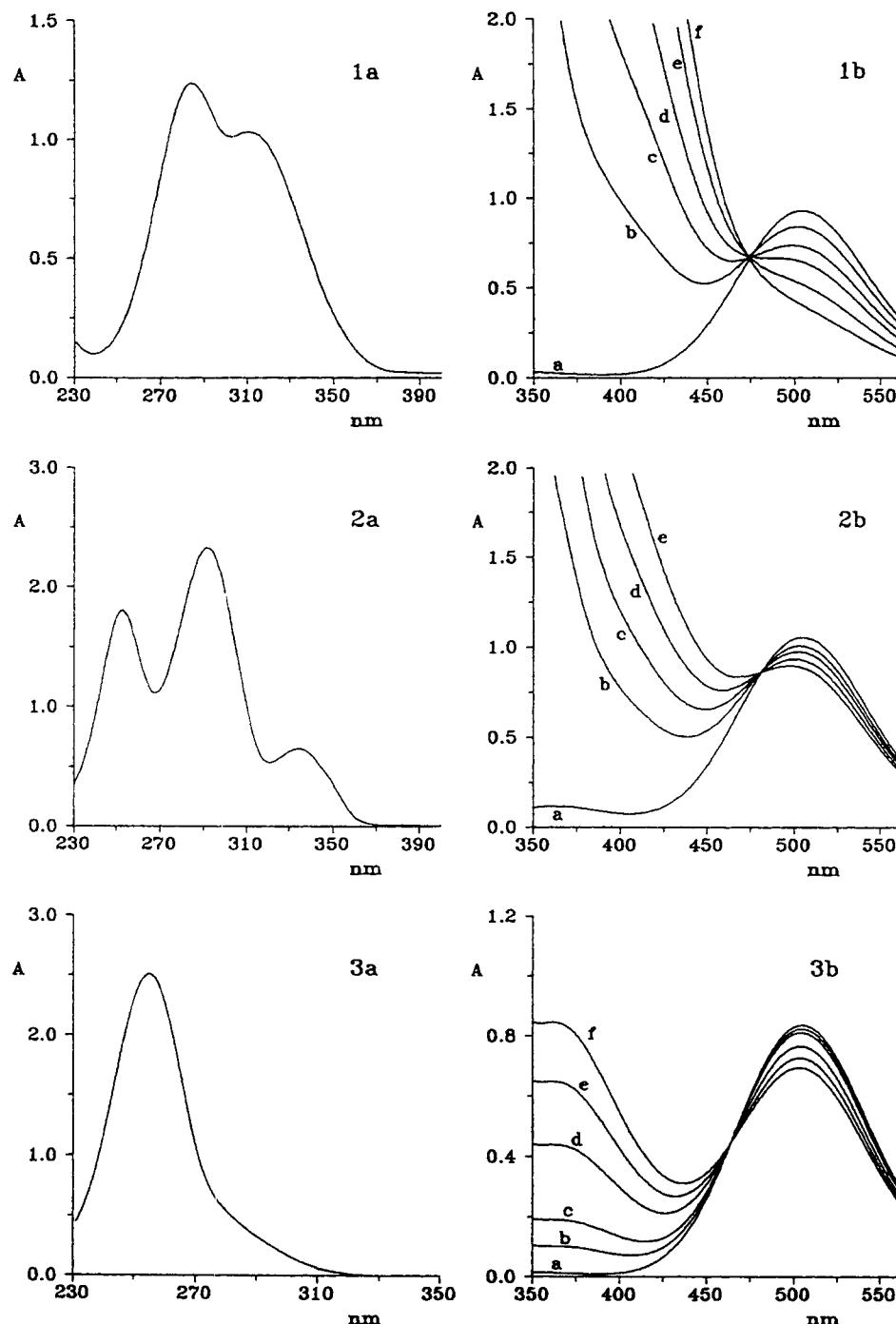



FIGURE 2

in the presence of diiodine; this result seems to indicate that both nitrogens can be involved in the coordination. In this case, the  $K$  value must be considered as the sum of the two  $K$ 's relating to the two parallel equilibria involving both N(1) and N(3) [12].

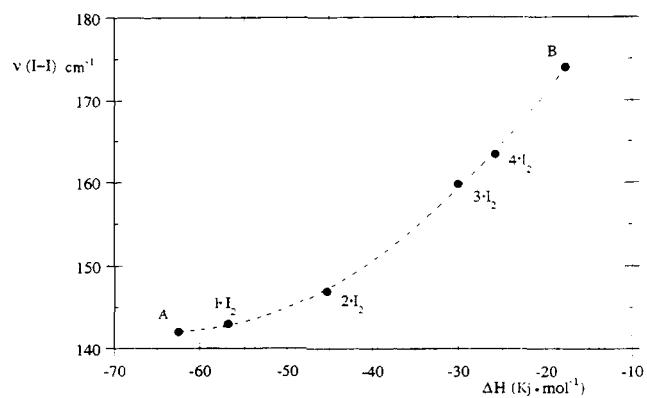
In order to explain the very high difference in  $K$  values between *N,N'*-dimethyl-4-oxo-imidazolidine-2-thione and *N,N'*-dimethyl-4-thioxo-imidazolidine-2-thione in comparison with the values

found for their *N*-monomethylated or unmethylated derivatives [14,20], a hydrogen bonding interaction between the NH hydrogen and the co-ordinated iodine was invoked and experimentally proved by IR spectroscopy. In fact, the  $\nu(\text{NH})$  stretching vibration frequencies of the free donors shift toward lower values in the presence of diiodine. The hydrogen bonding interaction has also been proven to operate in the solid state, since many crystal structures of adducts of thiohydantoin de-

**TABLE 1** Molar Extinction Coefficients  $\epsilon$  ( $\text{dm}^3 \text{ mol}^{-1} \text{ cm}^{-1}$ ) at the 6 Wavelengths  $\lambda$  (nm) Used for the Calculation, Association Constants  $K$  ( $\text{dm}^3 \text{ mol}^{-1}$ ), and Sums of the Squared Deviations ( $\chi^2$ ) for the Reaction between Compounds 1, 2, and 3 with  $I_2^a$ 

|                                                       |           | Compound 1                                            |           | Compound 2                                            |           | Compound 3 |  |
|-------------------------------------------------------|-----------|-------------------------------------------------------|-----------|-------------------------------------------------------|-----------|------------|--|
| 15°C                                                  | $\lambda$ | $\epsilon$                                            | $\lambda$ | $\epsilon$                                            | $\lambda$ | $\epsilon$ |  |
|                                                       | 430       | 3000(95)                                              | 420       | 4410(38)                                              | 410       | 2820(40)   |  |
|                                                       | 420       | 3900(120)                                             | 410       | 5550(35)                                              | 400       | 3460(33)   |  |
|                                                       | 410       | 4800(140)                                             | 400       | 6850(43)                                              | 380       | 4470(40)   |  |
|                                                       | 400       | 5800(130)                                             | 390       | 8520(68)                                              | 370       | 4600(50)   |  |
|                                                       | 390       | 6800(110)                                             | 380       | 10800(170)                                            | 360       | 4540(53)   |  |
|                                                       | 380       | 8200(140)                                             | 370       | 13800(260)                                            | 350       | 4770(39)   |  |
| $K = 24000(3000)$                                     |           | $K = 1200(48)$                                        |           | $K = 21(1)$                                           |           |            |  |
| $\chi^2 = 0.225$                                      |           | $\chi^2 = 0.756$                                      |           | $\chi^2 = 0.125$                                      |           |            |  |
| 20°C                                                  | $\lambda$ | $\epsilon$                                            | $\lambda$ | $\epsilon$                                            | $\lambda$ | $\epsilon$ |  |
|                                                       | 430       | 3050(88)                                              | 420       | 4330(33)                                              | 410       | 2800(35)   |  |
|                                                       | 420       | 4000(113)                                             | 410       | 5440(34)                                              | 400       | 3470(32)   |  |
|                                                       | 410       | 4900(130)                                             | 400       | 6730(50)                                              | 380       | 4460(40)   |  |
|                                                       | 400       | 5800(122)                                             | 390       | 8400(77)                                              | 370       | 4610(50)   |  |
|                                                       | 390       | 6900(110)                                             | 380       | 10600(170)                                            | 360       | 4530(52)   |  |
|                                                       | 380       | 8400(128)                                             | 370       | 13700(260)                                            | 350       | 4800(40)   |  |
| $K = 16000(1500)$                                     |           | $K = 900(37)$                                         |           | $K = 17.5(0.8)$                                       |           |            |  |
| $\chi^2 = 0.184$                                      |           | $\chi^2 = 0.689$                                      |           | $\chi^2 = 0.078$                                      |           |            |  |
| 25°C                                                  | $\lambda$ | $\epsilon$                                            | $\lambda$ | $\epsilon$                                            | $\lambda$ | $\epsilon$ |  |
|                                                       | 430       | 3070(80)                                              | 420       | 4340(37)                                              | 410       | 2790(31)   |  |
|                                                       | 420       | 4950(99)                                              | 410       | 5430(35)                                              | 400       | 3470(31)   |  |
|                                                       | 410       | 4800(113)                                             | 400       | 6740(44)                                              | 380       | 4440(42)   |  |
|                                                       | 400       | 5700(108)                                             | 390       | 8470(68)                                              | 370       | 4580(48)   |  |
|                                                       | 390       | 6900(101)                                             | 380       | 10900(110)                                            | 360       | 4550(50)   |  |
|                                                       | 380       | 8500(124)                                             | 370       | 14300(230)                                            | 350       | 4790(40)   |  |
| $K = 11000(800)$                                      |           | $K = 640(21)$                                         |           | $K = 14.6(0.8)$                                       |           |            |  |
| $\chi^2 = 0.143$                                      |           | $\chi^2 = 0.407$                                      |           | $\chi^2 = 0.056$                                      |           |            |  |
| 30°C                                                  | $\lambda$ | $\epsilon$                                            | $\lambda$ | $\epsilon$                                            | $\lambda$ | $\epsilon$ |  |
|                                                       | 430       | 3110(76)                                              | 420       | 4320(39)                                              | 410       | 2780(38)   |  |
|                                                       | 420       | 4000(94)                                              | 410       | 5400(38)                                              | 400       | 3450(30)   |  |
|                                                       | 410       | 4800(106)                                             | 400       | 6730(47)                                              | 380       | 4450(32)   |  |
|                                                       | 400       | 5800(103)                                             | 390       | 8500(69)                                              | 370       | 4620(43)   |  |
|                                                       | 390       | 7000(205)                                             | 380       | 10970(88)                                             | 360       | 4520(48)   |  |
|                                                       | 380       | 8800(146)                                             | 370       | 14500(160)                                            | 350       | 4800(42)   |  |
| $K = 7600(600)$                                       |           | $K = 475(12)$                                         |           | $K = 12.8(0.9)$                                       |           |            |  |
| $\chi^2 = 0.199$                                      |           | $\chi^2 = 0.199$                                      |           | $\chi^2 = 0.067$                                      |           |            |  |
| 35°C                                                  | $\lambda$ | $\epsilon$                                            | $\lambda$ | $\epsilon$                                            | $\lambda$ | $\epsilon$ |  |
|                                                       | 430       | 3210(88)                                              | 420       | 4300(43)                                              | 410       | 2770(52)   |  |
|                                                       | 420       | 4200(118)                                             | 410       | 5400(44)                                              | 400       | 3440(48)   |  |
|                                                       | 410       | 5100(143)                                             | 400       | 6750(53)                                              | 380       | 4450(36)   |  |
|                                                       | 400       | 6200(143)                                             | 390       | 8600(76)                                              | 370       | 4670(50)   |  |
|                                                       | 390       | 7500(120)                                             | 380       | 11200(85)                                             | 360       | 4468(54)   |  |
|                                                       | 380       | 9400(167)                                             | 370       | 14900(130)                                            | 350       | 4890(38)   |  |
| $K = 5200(350)$                                       |           | $K = 357(8)$                                          |           | $K = 10.6(0.9)$                                       |           |            |  |
| $\chi^2 = 0.193$                                      |           | $\chi^2 = 0.136$                                      |           | $\chi^2 = 0.023$                                      |           |            |  |
| $\Delta H = -56.8(0.3) \text{ KJ mol}^{-1}$           |           | $\Delta H = -45.3(0.7) \text{ KJ mol}^{-1}$           |           | $\Delta H = -24.8(0.8) \text{ KJ mol}^{-1}$           |           |            |  |
| $\Delta S = -13(1) \text{ J mol}^{-1} \text{ K}^{-1}$ |           | $\Delta S = -98(2) \text{ J mol}^{-1} \text{ K}^{-1}$ |           | $\Delta S = -61(2) \text{ J mol}^{-1} \text{ K}^{-1}$ |           |            |  |
| $r = 1.000$                                           |           | $r = 1.000$                                           |           | $r = 0.999$                                           |           |            |  |

<sup>a</sup>Standard deviations in parentheses.


**TABLE 2**  $^{13}\text{C}$  NMR Chemical Shifts ( $\delta$ ) of Compounds **1–4** of the Calculated 1:1 CT Complexes with Diiodine and Their Differences  $\Delta\delta^\circ$  (=Chemical Shift of the Adduct – Chemical Shift of the Ligand)

| Compound             | <i>C</i> (2) | <i>C</i> (4) | <i>C</i> (5) | <i>Me/Me</i> | <i>S(1)Me</i> | <i>S(2)Me</i> |
|----------------------|--------------|--------------|--------------|--------------|---------------|---------------|
| 1                    | 192.76       | 200.45       | 72.93        | 25.62        | —             | 13.89         |
| $1 \cdot I_2$        | 187.77       | 205.91       | 76.21        | 25.86        | —             | 14.90         |
| $\Delta\delta^\circ$ | -4.99        | 5.46         | 3.28         | 0.24         |               | 1.01          |
| 2                    | 160.25       | 221.25       | 80.83        | 26.58        | 12.64         | —             |
| $2 \cdot I_2$        | 181.74       | 216.87       | 78.07        | 28.11        | 16.54         | —             |
| $\Delta\delta^\circ$ | 21.49        | -4.38        | -2.76        | 1.53         | 3.90          | —             |
| 3                    | 171.86       | 204.44       | 82.64        | 25.56        | 14.36         | 14.90         |
| $3 \cdot I_2$        | 175.48       | 205.31       | 82.92        | 26.06        | 15.67         | 15.13         |
| $\Delta\delta^\circ$ | 3.62         | 0.87         | 0.28         | 0.50         | 1.31          | 0.23          |
| 4                    | 179.27       | 210.31       | 74.35        | 27.78        | —             | —             |
| $4 \cdot I_2$        | 177.48       | 208.91       | 75.78        | 27.77        | —             | —             |
| $\Delta\delta^\circ$ | -1.79        | -1.40        | 1.43         | -0.01        | —             | —             |

rivatives with  $I_2$  show an  $\text{N}-\text{H} \cdots \text{I}$  interaction [14,21]. For **1**, the  $\nu(\text{NH})$  stretching frequency shifts from 3427 (free donor) to 3367  $\text{cm}^{-1}$  (adduct), with a  $\Delta\nu$  of 60  $\text{cm}^{-1}$ , very similar to those found for **4**, where the shifts were 61 and 64  $\text{cm}^{-1}$  for  $\text{N}(1)$  and  $\text{N}(3)$ , respectively [20]. These values of  $\Delta\nu(\text{NH})$  are slightly lower with respect to the value of 70  $\text{cm}^{-1}$  found for *N*-ethyl-imidazolidine-2-thione ( $K \approx 80,000 \text{ dm}^3 \text{ mol}^{-1}$  at 25°C;  $\text{CH}_2\text{Cl}_2$ ) [1]. These findings indicate that the contribution of intramolecular hydrogen bonding to the stabilization of the adducts is almost the same in compounds containing the  $-\text{NH}-\text{CS}-$  thioamido group. Compound **2** shows only one  $\nu(\text{NH})$  stretching frequency at 3398  $\text{cm}^{-1}$  that is not shifted by the complex formation; in this case, absence of the intramolecular hydrogen bond seems to indicate that **2** prefers to bind diiodine as the  $\Delta^2$  tautomer. Finally, the greater value of  $\Delta H$  in  $1 \cdot I_2$  ( $-56.8 \pm 0.3 \text{ Kj mol}^{-1}$ ) with respect to that of  $2 \cdot I_2$  ( $-45.3 \pm 0.7 \text{ Kj mol}^{-1}$ ) might be ascribed to hydrogen bond formation.

FT-Raman spectroscopy has nowadays gained great importance [22–31] in the study of adducts with diiodine, since it is sensitive to the lengthening of the  $\text{I}-\text{I}$  bond induced by the coordination. In fact, the stretching frequency of  $I_2$  (209  $\text{cm}^{-1}$  in  $\text{CH}_2\text{Cl}_2$  solution) shifts toward lower energies when a donor pours a fraction of its electronic charge on the  $\sigma^*$  antibonding orbital of  $I_2$  and, in agreement with the MO description [32], induces a lowering of the  $\text{I}-\text{I}$  force constant. The measured values of  $\nu(\text{I}-\text{I})$  and the calculated formation enthalpy of **1–4** (for 1:1 model), together with those of *N*-ethyl-imidazolidine-2-thione [1] and 1,3,5,5-tetramethylimidazolidine-2,4-dithione [14], which have been included in order to enlarge the range of  $\Delta H$  values, are pictured in Figure 3. The data are well interpolated by a second-order polynomial equation ( $r = 0.99$ ).

This result is in accordance with the fact that both  $\Delta H$  and  $\nu(\text{I}-\text{I})$  are related to the strength of

**FIGURE 3**

the donor-diiodine interaction. This correlation can be useful to calculate the strength of the donor-diiodine interaction ( $\Delta H$  values) in  $\text{CH}_2\text{Cl}_2$  solution only on the ground of the  $\nu(\text{I}-\text{I})$  stretching frequency.

## EXPERIMENTAL

### Materials

All reactions of air- and water-sensitive materials were performed in flame-dried glassware under an atmosphere of nitrogen. Air and water sensitive solutions were transferred by use of hypodermic syringes or double-ended needles. Diiodine was purified by sublimation from  $KI$ .  $\Delta^3$ -4-S-Methyl-5,5-dimethylimidazolidine-2-thione (**1**) and 5,5-dimethylimidazolidine-2,4-dithione (**4**) were prepared according to the literature [33,34]. For **1**, the spectral properties were in good agreement with those previously reported; however, we also recorded the UV spectra in water and cyclohexane: UV  $\lambda_{\text{max}}$  ( $\log \epsilon$ ) (water,  $[1] = 2 \cdot 10^{-4} \text{ M}$ ): 290 nm (4.07); (cyclohexane,  $[1] = 2 \cdot 10^{-4} \text{ M}$ ): 275 (4.07),

312 nm (3.98). In order to make the attributions to the  $^{13}\text{C}$  NMR signals of **1** (see the Spectrophotometric Measurements and Data Treatment section), we synthesized its  $-\text{SCD}_3$  deuterated derivative with the same procedure as for **1** [33].  $\Delta^3$ -4-S-Deutero-methyl-5,5-dimethylimidazolidine-2-thione, which was obtained in 17% yield starting from **4**, was as follows: mp: 191–192°C. IR (KBr):  $\nu$  3250 (m), 2985 (m), 2928 (m), 2235 (w), 1510 (s), 1475 (s), 1453 (s), 1376 (m), 1368 (w), 1320 (w), 1144 (s), 1082 (s), 970 (w), 942 (w), 700 (w), 590 (bw), 549 (w), 515 (w), 425 (w). Anal. calcd for  $\text{C}_6\text{H}_7\text{D}_3\text{N}_2\text{S}_2$ ; found (%): C (40.6) 41.0; N (15.8) 16.0; S (36.2) 36.4.  $^{13}\text{C}\{\text{H}\}$  NMR ( $\text{CDCl}_3$ , 75.4 MHz):  $\delta$  200.68 (m, C(4)), 192.25 (d,  $^2J(\text{C}, \text{NH}) = 5.5$  Hz, C(2)), 73.59 (m, C(5)), 25.81 (dq,  $^1J(\text{C}, \text{H}) = 130.7$  Hz,  $^3J(\text{C}, \text{NH}) = 4.4$  Hz,  $(\text{CH}_3)_2\text{C}-$ ), 13.44 (septuplet,  $^1J(\text{C}, \text{D}) = 21.98$  Hz,  $-\text{SCD}_3$ ).  $^1\text{H}$  NMR ( $\text{CDCl}_3$ , 300 MHz):  $\delta$  1.45 (s, 6H), 9.5 (brs, NH). The preparations of  $\Delta^2$ -2-S-methyl-5,5-dimethylimidazolidine-4-thione (**2**) and  $\Delta^1$ - $\Delta^3$ -2-S-methyl-4-S-methyl-5,5-dimethylimidazolidine (**3**) have been reported previously [33,35,36]. Since only a very concise description of the preparation was reported, without any yields or physical and spectroscopic characterizations of the compounds [35], the syntheses of **2** and **3** were improved by the following procedures.

### $\Delta^2$ -2-S-methyl-5,5-dimethylimidazolidine-4-thione (**2**)

Methyl iodide (1 mL, 0.015 mol) was added to a solution of 5,5-dimethylimidazolidine-2,4-dithione (**4**) (2.4 g, 0.015 mol) in methanol (30 mL). The reaction mixture was maintained under reflux for 4 hours and then partially concentrated by evaporation at room pressure. Diethyl ether was added to the obtained solution (10 mL), until formation of a yellow solid occurred, and this was isolated by filtration. An aqueous 5% solution of  $\text{NaHCO}_3$  (50 mL) was added to the yellow solid (3.54 g), and the obtained suspension was stirred for 15 minutes at room temperature.  $\Delta^2$ -2-S-methyl-5,5-dimethylimidazolidine-4-thione (**2**) (2.06 g, 79% yield; the yield reported in Ref. [33] for the synthesis of **2** using a more complex procedure is 80.4%) was obtained after filtration. This compound was homogeneous to TLC analyses and had the following physical constants.

Mp: 168–169°C (Ref. [35]: 168°C; Ref. [33]: 171–172°C). IR (KBr):  $\nu$  3055 (m), 2972 (m), 2925 (m), 2859 (w), 1513 (s), 1451 (m), 1372 (w), 1325 (s), 1283 (s), 1203 (s), 1107 (s), 986 (m), 965 (m), 955 (m), 880 (w), 647 (w), 543 (m), 512 (m)  $\text{cm}^{-1}$ . Anal. calcd for  $\text{C}_6\text{H}_{10}\text{N}_2\text{S}_2$ ; found (%): C (41.3) 41.6, H (5.8) 5.9, N (16.1) 16.2, S (36.8) 37.0.  $^1\text{H}$  NMR ( $\text{CDCl}_3$ , 300 MHz):  $\delta$  2.61 (s, 3H), 1.45 (s, 6H). UV  $\lambda_{\text{max}}$  ( $\log \epsilon$ ) (water, **[2]** =  $2 \cdot 10^{-4}$  M): 258 (3.92), 324 nm (4.18); (cyclohexane, **[2]** =  $2 \cdot 10^{-4}$  M): 249 (3.97), 290 nm (4.11).

### $\Delta^1$ - $\Delta^3$ -2-S-methyl-4-S-methyl-5,5-dimethylimidazolidine (**3**)

An aqueous solution 2 N NaOH (15 mL) and methyl iodide (2 mL, 0.032 mol) was added to a solution of 5,5-dimethylimidazolidine-2,4-dithione (**4**) (2.4 g, 0.015 mol) in ethanol (30 mL). The mixture was stirred at room temperature for 48 hours, and then the ethanol was evaporated under reduced pressure. The aqueous emulsion obtained was extracted with  $\text{CHCl}_3$ . The organic extract was washed with water until neutrality had been achieved and then dried and concentrated under reduced pressure. The residue (mp = 35–40°C) was purified by flash chromatography on silica gel, using  $\text{CHCl}_3$  as eluent to give **3** as a pale yellow oil (2.22 g, 87% yield); in the literature, this compound has been reported as a solid with mp 35°C [35]. **3** was homogeneous to TLC analyses and had the following physical constants.

IR (CsI):  $\nu$  2976 (m), 2959 (w), 2927 (m), 1546 (s), 1484 (s), 1452 (w), 1359 (w), 1315 (m), 1250 (w), 1297 (m), 1133 (s), 1071 (s), 985 (m), 907 (m), 747 (w), 696 (w), 644 (m), 522 (m), 432 (w), 322 (w), 310 (m)  $\text{cm}^{-1}$ . Anal. calcd for  $\text{C}_7\text{H}_{12}\text{N}_2\text{S}_2$ ; found (%): C (44.6) 45.0; H (6.4) 6.7; N (14.9) 14.9; S (34.0) 34.6.  $^1\text{H}$  NMR ( $\text{CDCl}_3$ , 300 MHz):  $\delta$  2.78 (s, 3H), 1.57 (s, 6H). UV  $\lambda_{\text{max}}$  ( $\log \epsilon$ ) (water, **[3]** =  $1.5 \cdot 10^{-4}$  M): 260 nm (4.20); (cyclohexane, **[3]** =  $1.5 \cdot 10^{-4}$  M): 253 nm (4.20).

### Spectrophotometric Measurements and Data Treatment

UV-Visible measurements were carried out in  $\text{CH}_2\text{Cl}_2$  solutions by use of a Varian model Cary 5 UV-Vis-NIR spectrophotometer equipped with a temperature controller accessory. The spectra of 12 different solutions were recorded in the 280 to 500 nm range at the temperatures of 15, 20, 25, 30, and 35°C. The reagent concentrations were chosen according to the criteria outlined by Carta et al. [37]. On condition that the donor and diiodine spectra are known, it is possible to calculate a correct absorbance value ( $A_s$ ) proportional to the adduct concentration

$$A_s = A_{\text{exp}} - \epsilon_{I_2}[I_2]_0 - \epsilon_D[D]_0 \quad (2)$$

where  $A_{\text{exp}}$  is the measured absorbance at the different wavelengths,  $\epsilon_{I_2}$  and  $\epsilon_D$  the molar extinction coefficients of  $I_2$  and the donor, respectively, and  $[I_2]_0$  and  $[D]_0$  the initial molar concentrations.

The matrix of the  $A_s$  values processed by a non-linear least-squares method enables us to obtain both the  $\epsilon$  values at the different wavelengths and the equilibrium  $K$ .

The data treatment was carried out using a program based on the assumption that the best values of  $K$  and  $\epsilon$  are those that minimize the sum of the function  $\chi^2 = \sum(A_c - A_s)^2/(N - 2)$ , where  $A_c$

and  $A_s$  are the calculated and the corrected absorbances and  $N$  is the number of data points. A detailed explanation of the data treatment is available in Refs. [38 and 39].

The infrared spectra in  $\text{CH}_2\text{Cl}_2$  solutions were taken in the range 3600–3100  $\text{cm}^{-1}$  in a 0.2 cm pathway quartz cell, using a Perkin Elmer 983 instrument connected with a Perkin Elmer 7500 data station. The envelopes of the bands due to  $\nu(\text{NH})$  were deconvoluted with a program that treats every band as a Gaussian curve and minimizes the sum of the squared deviations between the experimental and calculated absorbances [40].

The FT-Raman spectra were recorded by means of a Bruker FRS 100 FT-Raman spectrometer, operating with a diode-pumped Nd:YAG exciting laser emitting at a 1064 nm wavelength and having a power impinging on the sample tunable up to 350 mW. The detection of the signal was made with an indium-gallium-arsenide detector operating at room temperature; all spectra were recorded at a 4  $\text{cm}^{-1}$  resolution, down to the 50  $\text{cm}^{-1}$  Raman shift. The  $\text{CH}_2\text{Cl}_2$  solutions having a 1/1 molar ratio between donor and diiodine ( $[I_2] = 3.5 \cdot 10^{-2}$  M) were put into 0.5 cm path length quartz cell and fitted into the compartment designed for a 180° scattering geometry.

The  $^1\text{H}$  NMR spectra were recorded by use of a Varian FT-NMR spectrometer VXR 300, operating at 300 MHz frequency. TMS was employed as the external reference.

The  $^{13}\text{C}$  NMR spectra were recorded on  $\text{CH}_2\text{Cl}_2$  solutions at a temperature of 20°C by a Varian FT-NMR spectrometer VXR 300, operating at 75.4 MHz frequency.  $\text{DMSO-}d^6$  ( $\delta = 39.70$  ppm) was employed as the external reference. The attribution of the signals of carbons C(2) and C(4) in compound **1** required the preparation of its  $-\text{SCD}_3$  deuterated analogues (see the Materials section). The  $^{13}\text{C}\{^1\text{H}\}$  NMR spectra of **1** and  $\Delta^3$ -4-S-deuteromethyl-5,5-dimethylimidazolidine-2-thione have allowed us to assign the peak at  $\delta$  192.76 to C(2) and that at  $\delta$  200.45 to C(4), since only the latter signal shows an apparently broader peak due to  $^3J(\text{C}-\text{D})$  coupling between C(4) and the deuterium atoms of  $\text{CD}_3$  group. Carbon assignments in compounds **2** and **3** were made by analogy with other compounds already studied [41]. For the determination of the  $^{13}\text{C}$  chemical shifts of the adducts, the procedure described in Ref. [20] was followed.

The  $^{14}\text{N}$  NMR spectra were recorded at a temperature of 20°C by use of a Varian FT-NMR spectrometer VXR 300, operating at 21.6 MHz frequency. Neat  $\text{MeNO}_2$  was employed as the external reference. The concentrations of donor and diiodine in  $\text{CH}_2\text{Cl}_2$  solution were  $9.0 \cdot 10^{-2}$  mol/dm<sup>3</sup>.

### Conformational Calculation

The semiempirical quantum mechanical calculations were done using the AM1 and PM3 methods

as implemented in the MOPAC 6.0 quantum mechanical package [42]. The geometry of all the conformers was optimized using the PRECISE option and imposing a norm of the gradient of less than 0.1 with the keyword GNORM = 0.1. A calculation of the force constants on the optimized geometries showed that all the conformations obtained were minima in the potential energy surface, since all the force constants were positive.

### ACKNOWLEDGMENTS

The C.N.R. of Rome (Progetto Finalizzato Chimica Fine) is acknowledged for support in this research.

### REFERENCES

- [1] C. Raby, J. Claude, C. Moesch, J. C. R. Buxeraud, *Acad. Sci. Ser. C*, 288, 1979, 319.
- [2] J. Buxeraud, A. C. Absil, J. Claude, C. Raby, G. Catazano, C. Beck, F. Calaud, *Eur. J. Med. Chem.-Chim. Ther.*, 20, 1985, 43.
- [3] D. S. Cooper, *New Engl. J. Med.*, 311, 1984, 1353.
- [4] L. S. Goodman, A. Gilman: *Goodman and Gilman's the Pharmacological Basis of Therapeutics*, VII ed., Macmillan Publishing Company, New York, 1985.
- [5] C. Raby, J. Buxeraud, *Eur. J. Med. Chem.*, 15, 1980, 425.
- [6] A. C. Absil, J. Buxeraud, C. Raby, *Can. J. Chem.*, 62, 1984, 1807.
- [7] C. Raby, J. F. Lagorce, A. C. Jambut-Absil, J. Buxeraud, G. Catazano, *Endocrinology*, 126, 1990, 1683.
- [8] F. A. Devillanova, G. Verani, *Tetrahedron*, 35, 1979, 511.
- [9] F. A. Devillanova, G. Verani, *J. Heterocyclic Chem.*, 16, 1979, 945.
- [10] F. A. Devillanova, G. Verani, *Tetrahedron*, 37, 1981, 1803.
- [11] F. Cristiani, F. A. Devillanova, A. Diaz, G. Verani, *J. Chem. Soc., Perkin Trans., II*, 1984, 1383.
- [12] I. Cau, F. Cristiani, F. A. Devillanova, A. Diaz, G. Verani, *J. Chem. Soc., Perkin Trans., II*, 1985, 749.
- [13] F. Cristiani, F. A. Devillanova, A. Diaz, F. Isaia, G. Verani, *Heteroatom. Chem.*, 1, 1990, 363.
- [14] F. Cristiani, F. A. Devillanova, A. Garau, F. Isaia, V. Lippolis, G. Verani, *Heteroatom. Chem.*, 5, 1994, 65.
- [15] F. Cristiani, F. A. Devillanova, A. Diaz, F. Isaia, G. Verani, F. Demartin, G. Saba, *Can. J. Chem.*, 69, 1991, 383.
- [16] J. T. Edward, J. K. Liu, *Can. J. Chem.*, 50, 1972, 2423.
- [17] K. Lempert, J. Nytrai, K. Zauer, A. Kalman, Gy. Argay, A. J. M. Duisenbreg, *Tetrahedron*, 29, 1973, 3565.
- [18] The dipole moments, calculated by PM3, are 3.45, 3.97, and 7.03, 4.38 D for *syn*- $\Delta^1$ , *anti*- $\Delta^1$  and *syn*- $\Delta^2$ , *anti*- $\Delta^2$ , respectively; the corresponding values obtained for 2-S-methyl-5,5-dimethylimidazolidin-4-one were 2.31, 2.37, and 3.33, 6.26 D, respectively [15]. The dipole moments of the four conformations of **2**, calculated by AM1, are 3.35, 3.55, and 6.48, 4.43 D, respectively.
- [19] The infrared spectrum of **1** in  $\text{CH}_2\text{Cl}_2$  solution shows

only one band at  $3427\text{ cm}^{-1}$  due to the free  $\nu(\text{NH})$ . No band around  $2500\text{ cm}^{-1}$  attributable to  $\nu(\text{SH})$  stretching vibration is present. However, both PM3 and AM1 calculations indicate that the dipole moment of the thioketo tautomer (5.73 and  $6.06\text{ D}$  for the two different calculations) of **1** is higher than that of the thioenolic tautomer (1.44 and  $2.03\text{ D}$ ). Probably, on lowering the solvent polarity, a redistribution of the electronic charge density occurs toward the thioketonic sulfur without proton transfer from the nitrogen to the sulfur. This could explain the change in the UV spectrum with solvent polarity.

[20] F. Cristiani, F. A. Devillanova, A. Diaz, F. Isaia, G. Verani, *Spectrosc. Lett.*, **25**, 1992, 865.

[21] F. Cristiani, F. Demartin, F. A. Devillanova, F. Isaia, G. Saba, G. Verani, *J. Chem. Soc., Dalton Trans.*, 1992, 3553.

[22] T. J. Marks, D. W. Kalina: *Extended Linear Chain Compounds*, J. S. Miller, ed., Plenum Press, New York, vol. 2, 1982.

[23] J. R. Ferraro, J. M. Williams: The Use of Vibrational Spectroscopy in the Characterization of Synthetic Organic Electrical Conductors and Superconductors, in J. R. Ferraro, K. Krishnan (eds.): *Practical Fourier Transform Infrared Spectroscopy*, Academic Press, New York (1990).

[24] R. C. Teitebaum, S. L. Ruby, T. J. Marks, *J. Am. Chem. Soc.*, **102**, 1980, 3322 and references therein.

[25] J. R. Ferraro, *Coord. Chem. Rev.*, **43**, 1982, 205.

[26] C. J. Schramm, R. P. Scaringe, D. R. Stojakovic, B. M. Hoffman, J. Ibers, T. J. Marks, *J. Am. Chem. Soc.*, **102**, 1980, 6702.

[27] B. N. Diel, T. J. Inabe, W. Lyding, K. F. Schoch, Jr., C. R. Kannewurf, T. J. Marks, *J. Am. Chem. Soc.*, **105**, 1983, 1551.

[28] P. Deplano, F. A. Devillanova, J. R. Ferraro, F. Isaia, V. Lippolis, M. L. Mercuri, *Appl. Spectrosc.*, **11**, 1992, 1625.

[29] F. Demartin, P. Deplano, F. A. Devillanova, F. Isaia, V. Lippolis, G. Verani, *Inorg. Chem.*, **32**, 1993, 3694.

[30] E. M. Nour, L. H. Chen, J. Laane, *J. Raman Spectrosc.*, **17**, 1986, 467.

[31] P. Klaboe, *J. Am. Chem. Soc.*, **89**, 1967, 3667.

[32] K. F. Purcell, J. C. Kotz: *Inorganic Chemistry*, Sanders, Philadelphia, 1977.

[33] Z. Gombos, M. Mihok, I. Borbely-Mihok, S. Elek, K. Lempert, J. Nytrai, *Acta Chim. Hungarica*, **126**, 1989, 157.

[34] H. C. Carrington, W. S. Waring, *J. Chem. Soc.*, **95**, 1973, 197.

[35] R. Hazard, J. Cheymol, P. Chabrier, K. Smerzewka, *Bull. Soc. Chim. France*, 1949, 228.

[36] P. Chabrier, K. Smerzewka, *Comp. Rend.*, **230**, 1950, 656.

[37] G. Carta, G. Crisponi, V. Nurchi, *Tetrahedron*, **37**, 1981, 2115.

[38] V. Nurchi, G. Crisponi, *J. Chem. Ed.*, **66**, 1989, 54.

[39] G. Crisponi, P. Deplano, V. Nurchi, E. F. Trogu, *Polyhedron*, **3**, 1984, 1241.

[40] G. Crisponi, F. Cristiani, V. Nurchi: *2nd Italian-Spanish Congress on Thermodynamics of Metal Complexes*, Palermo, 1991.

[41] F. Demartin, F. A. Devillanova, A. Diaz, F. Isaia, V. Lippolis, G. Verani, *Phosphorus, Sulfur, Silicon*, **70**, 1992, 121.

[42] MOPAC-QCPE 455, Version 6.0